
CELEBRATING 40 YEARS OF ICT IN
LIBRARIES, MUSEUMS AND ARCHIVES

An algorithm for suffix stripping
M.F. Porter

Computer Laboratory, Cambridge, UK

Abstract

Purpose – The automatic removal of suffixes from words in English is of particular interest in the
field of information retrieval. This work was originally published in Program in 1980 and is
republished as part of a series of articles commemorating the 40th anniversary of the journal.

Design/methodology/approach – An algorithm for suffix stripping is described, which has been
implemented as a short, fast program in BCPL.

Findings – Although simple, it performs slightly better than a much more elaborate system with
which it has been compared. It effectively works by treating complex suffixes as compounds made up
of simple suffixes, and removing the simple suffixes in a number of steps. In each step the removal of
the suffix is made to depend upon the form of the remaining stem, which usually involves a measure of
its syllable length.

Originality/value – The piece provides a useful historical document on information retrieval.

Keywords Information retrieval, Computer applications, Historical research

Paper type Technical paper

1. Introduction
Removing suffixes from words by automatic means is an operation which is especially
useful in the field of information retrieval. In a typical IR environment, one has a
collection of documents, each described by the words in the document title and
possibly the words in the document abstract. Ignoring the issue of precisely where the
words originate, we can say that a document is represented by a vector of words, or
terms. Terms with a common stem will usually have similar meanings, for example:

CONNECT

CONNECTED

CONNECTING

CONNECTION

CONNECTIONS

Frequently, the performance of an IR system will be improved if term groups such as
this are conflated into a single term. This may be done by removal of the various
suffixes, -ED, -ING, -ION, -IONS, to leave the single stem CONNECT. In addition, the

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0033-0337.htm

This paper was first published in Program, Vol. 14 No. 3, July 1980, pp. 130-7. It has been
included in this issue as part of a series of articles to commemorate the 40th anniversary of
Program.

The author is grateful to the British Library R&D Department for the funds which supported
this work.

An algorithm for
suffix stripping

211

Program: electronic library and
information systems

Vol. 40 No. 3, 2006
pp. 211-218

q Emerald Group Publishing Limited
0033-0337

DOI 10.1108/00330330610681286

suffix stripping process will reduce the total number of terms in the IR system, and
hence reduce the size and complexity of the data in the system, which is always
advantageous.

Many strategies for suffix stripping have been reported in the literature (Lovins,
1968; Andrews, 1971; Petrarca and Lay, 1969; Dattola, 1975; Colombo and Niehoff, n.d.;
Dawson, 1974). The nature of the task will vary considerably depending on whether a
stem dictionary is being used, whether a suffix list is being used, and of course on the
purpose for which the suffix stripping is being done. Assuming that one is not making
use of a stem dictionary, and that the purpose of the task is to improve IR performance,
the suffix stripping program will usually be given an explicit list of suffixes, and, with
each suffix, the criterion under which it may be removed from a word to leave a valid
stem. This is the approach adopted here. The main merits of the present program are
that it is small (less than 400 lines of BCPL), fast (it will process a vocabulary of 10,000
different words in about 8.1 seconds on the IBM 370/165 at Cambridge University), and
reasonably simple. At any rate, it is simple enough to be described in full as an
algorithm in this paper. (The present version in BCPL is freely available from the
author. BCPL itself is available on a wide range of different computers, but anyone
wishing to use the program should have little difficulty in coding it up in other
programming languages.) Given the speed of the program, it would be quite realistic to
apply it to every word in a large file of continuous text, although for historical reasons
we have found it convenient to apply it only to relatively small vocabulary lists derived
from continuous text files.

In any suffix stripping program for IR work, two points must be borne in mind.
Firstly, the suffixes are being removed simply to improve IR performance, and not as a
linguistic exercise. This means that it would not be at all obvious under what
circumstances a suffix should be removed, even if we could exactly determine the
suffixes of the words by automatic means.

Perhaps the best criterion for removing suffixes from two words W1 and W2 to
produce a single stem S, is to say that we do so if there appears to be no difference
between the two statements “a document is about W1” and “a document is about W2”.
So if W1 ¼ ‘CONNECTION’ and W2 ¼ ‘CONNECTIONS’ it seems very reasonable to
conflate them to a single stem. But if W1 ¼ ‘RELATE’ and W2 ¼ ‘RELATIVITY’ it
seems perhaps unreasonable, especially if the document collection is concerned with
theoretical physics. (It should perhaps be added that RELATE and RELATIVITY are
conflated together in the algorithm described here.) Between these two extremes there
is a continuum of different cases, and given two terms W1 and W2, there will be some
variation in opinion as to whether they should be conflated, just as there is with
deciding the relevance of some document to a query. The evaluation of the worth of a
suffix stripping system is correspondingly difficult.

The second point is that with the approach adopted here, i.e. the use of a suffix list
with various rules, the success rate for the suffix stripping will be significantly less
than 100 per cent, irrespective of how the process is evaluated. For example, if SAND
and SANDER get conflated, so most probably will WAND and WANDER. The error
here is that the -ER of WANDER has been treated as a suffix when in fact it is part of
the stem. Equally a suffix may completely alter the meaning of a word, in which case
its removal is unhelpful. PROBE and PROBATE for example, have quite distinct
meanings in modern English. (In fact these would not be conflated in our present

PROG
40,3

212

algorithm.) There comes a stage in the development of a suffix stripping program
where the addition of more rules to increase the performance in one area of the
vocabulary causes an equal degradation of performance elsewhere. Unless this
phenomenon is noticed in time, it is very easy for the program to become much more
complex than is really necessary. It is also easy to give undue emphasis to cases which
appear to be important, but which turn out in practice to be rather rare. For example,
cases in which the spelling of the root of the word changes with the addition of a suffix,
as in DECEIVE/DECEPTION, RESUME/RESUMPTION, INDEX/INDICES, occur
much more rarely in real vocabularies than one might at first suppose. In view of the
error rate that must in any case be expected, it did not seem worthwhile to try and cope
with these cases.

It is not obvious that the simplicity of the present program is any demerit. In a test
on the well-known Cranfield 200 collection (Cleverdon et al., 1966) it gave an
improvement in retrieval performance when compared with a very much more
elaborate program which has been in use in IR research at Cambridge since 1971
(Andrews, 1971; Dawson, 1974). The test was done as follows: the words of the titles
and abstracts in the documents were passed through the earlier suffix stripping
system, and the resulting stems were used to index the documents. The words of the
queries were reduced to stems in the same way, and the documents were ranked for
each query using term coordination matching of query against document. From these
rankings, recall and precision values were obtained using the standard recall cut-off
method. The entire process was then repeated using the suffix stripping system
described in this paper, and the results were as follows:

Clearly the performance is not very different. The important point is that the earlier,
more elaborate system certainly performs no better than the present, simple system.

(This test was done by Prof. C.J. van Rijsbergen.)

2. The algorithm
To present the suffix stripping algorithm in its entirety we will need a few definitions.

A consonant in a word is a letter other than A, E, I, O and U, and other than Y
preceded by a consonant. (The fact that the term “consonant” is defined to some extent
in terms of itself does not make it ambiguous.) So in TOY the consonants are T and Y,
in SYZYGY they are S, Z, and G. If a letter is not a consonant it is a vowel.

Earlier system Present system
Precision Recall Precision Recall
0 57.24 0 58.60
10 56.85 10 58.13
20 52.85 20 53.92
30 42.61 30 43.51
40 42.20 40 39.39
50 39.06 50 38.85
60 32.86 60 33.18
70 31.64 70 31.19
80 27.15 80 27.52
90 24.59 90 25.85
100 24.59 100 25.85

An algorithm for
suffix stripping

213

A consonant will be denoted by c, a vowel by v. A list ccc. . . of length greater than 0
will be denoted by C, and a list vvv. . . of length greater than 0 will be denoted by
V. Any word, or part of a word, therefore has one of the four forms:

CVCV. . .C

CVCV. . .V

VCVC. . .C

VCVC. . .V

These may all be represented by the single form:

[C] VCVC. . . [V]

where the square brackets denote arbitrary presence of their contents. Using (VC)m to
denote VC repeated m times, this may again be written as:

[C] (VC)m [V].

m will be called the measure of any word or word part when represented in this form.
The case m ¼ 0 covers the null word. Here are some examples:

m ¼ 0 TR, EE, TREE, Y, BY.

m ¼ l TROUBLE, OATS, TREES, IVY.

m ¼ 2 TROUBLES, PRIVATE, OATEN, ORRERY.

The rules for removing a suffix will be given in the form:

(condition) S1 ! S2

This means that, if a word ends with the suffix S1, and the stem before S1 satisfies
the given condition, S1 is replaced by S2. The condition is usually given in terms of
m, e.g.:

(m . l) EMENT !

Here S1 is ‘EMENT’ and S2 is null. This would map REPLACEMENT to REPLAC,
since REPLAC is word part for which m ¼ 2.

The ‘condition’ part may also contain the following:

*S – the stem ends with S (and similarly for the other letters).

*v * – the stem contains a vowel.

*d – the stem ends with a double consonant (e.g. -TT, -SS).

*o – the stem ends cvc, where the second c is not W, X or Y (e.g. -WIL, -HOP).

And the condition part may also contain expressions with and, or and not, so that:

(m . 1 and (*S or *T))

tests for a stem with m . 1 ending in S or T, while:

(*d and not (*L or *S or *Z))

PROG
40,3

214

tests for a stem ending with a double consonant other than L, S or Z. Elaborate
conditions like this are required only very rarely.

In a set of rules written beneath each other, only one is obeyed, and this will be the
one with the longest matching S1 for the given word. For example, with:

SSES ! SS

IES ! I

SS ! SS

S !

(here the conditions are all null) CARESSES maps to CARESS since SSES is the longest
match for S1. Equally CARESS maps to CARESS (S1 ¼ ‘SS’) and CARES to CARE
(S1 ¼ ‘S’).

In the rules below, examples of their application, successful or otherwise, are given
on the right in lower case. The algorithm now follows:

If the second or third of the rules in Step 1b is successful, the following is done:

The rule to map to a single letter causes the removal of one of the double letter pair.
The -E is put back on -AT, -BL and -IZ, so that the suffixes -ATE, -BLE and -IZE can be
recognised later. This E may be removed in Step 4.

Step 1a
SSES ! SS caresses ! caress
IES ! I ponies ! poni

ties ! ti
SS ! SS caress ! caress
S ! cats ! cat

Step 1b
(m . 0) EED ! EE feed ! feed

agreed ! agree
(*v *) ED ! plastered ! plaster

bled ! bled
(*v *) ING ! motoring ! motor

sing ! sing

AT ! ATE conflat(ed) ! conflate
BL ! BLE troubl(ing) ! trouble
IZ ! IZE siz(ed) ! size
(*d and not (*L or *S or *Z))
! single letter hopp(ing) ! hop

tann(ed) ! tan
fall(ing) ! fall
hiss(ing) ! hiss
fizz(ed) ! fizz

(m ¼ 1 and *o) ! E fail(ing) ! fail
fil(ing) ! file

An algorithm for
suffix stripping

215

Step 1 deals with plurals and past participles. The subsequent steps are much more
straightforward.

The test for the string S1 can be made fast by doing a program switch on the
penultimate letter of the word being tested. This gives a fairly even breakdown of the
possible values of the string S1. It will be seen in fact that the S1-strings in Step 2 are
presented here in the alphabetical order of their penultimate letter. Similar techniques
may be applied in the other steps.

Step 1c
(*v *) Y ! 1 happy ! happi

sky ! sky

Step 2
(m . 0) ATIONAL ! ATE relational ! relate
(m . 0) TIONAL ! TION conditional ! condition

rational ! rational
(m . 0) ENCI ! ENCE valenci ! valence
(m . 0) ANCI ! ANCE hesitanci ! hesitance
(m . 0) IZER ! IZE digitizer ! digitize
(m . 0) ABLI ! ABLE conformabli ! conformable
(m . 0) ALLI ! AL radicalli ! radical
(m . 0) ENTLI ! ENT differentli ! different
(m . 0) ELI ! E vileli ! vile
(m . 0) OUSLI ! OUS analogousli ! analogous
(m . 0) IZATION ! IZE vietnamization ! vietnamize
(m . 0) ATION ! ATE predication ! predicate
(m . 0) ATOR ! ATE operator ! operate
(m . 0) ALISM ! AL feudalism ! feudal
(m . 0) IVENESS ! IVE decisiveness ! decisive
(m . 0) FULNESS ! FUL hopefulness ! hopeful
(m . 0) OUSNESS ! OUS callousness ! callous
(m . 0) ALITI ! AL formaliti ! formal
(m . 0) IVITI ! IVE sensitiviti ! sensitive
(m . 0) BILITI ! BLE sensibiliti ! sensible

Step 3
(m . 0) ICATE ! IC triplicate ! triplic
(m . 0) ATIVE ! formative ! form
(m . 0) ALIZE ! AL formalize ! formal
(m . 0) ICITI ! IC electriciti ! electric
(m . 0) ICAL ! IC electrical ! electric
(m . 0) FUL ! hopeful ! hope
(m . 0) NESS ! goodness ! good

Step 4
(m . l) AL ! revival ! reviv
(m . l) ANCE ! allowance ! allow

(continued)

PROG
40,3

216

The suffixes are now removed. All that remains is a little tidying up.

The algorithm is careful not to remove a suffix when the stem is too short, the length of
the stem being given by its measure, m. There is no linguistic basis for this approach. It
was merely observed that m could be used quite effectively to help decide whether or
not it was wise to take off a suffix. For example, in the following two lists:

-ATE is removed from the list B words, but not from the list A words. This means that
the pairs DERIVATE/DERIVE, ACTIVATE/ACTIVE, DEMONSTRATE/
DEMONSTRABLE, NECESSITATE/NECESSITOUS, will conflate together. The
fact that no attempt is made to identify prefixes can make the results look rather
inconsistent. Thus, PRELATE does not lose the -ATE, but ARCHPRELATE becomes
ARCHPREL. In practice this does not matter too much, because the presence of the
prefix decreases the probability of an erroneous conflation.

(m . l) ENCE ! inference ! infer
(m . l) ER ! airliner ! airlin
(m . l) IC ! gyroscopic ! gyroscop
(m . l) ABLE ! adjustable ! adjust
(m . l) IBLE ! defensible ! defens
(m .1) ANT ! irritant ! irrit
(m . l) EMENT ! replacement ! replac
(m . l) MENT ! adjustment ! adjust
(m . l) ENT ! dependent ! depend
(m . l) and (*S or *T)) ION ! adoption ! adopt
(m . 1) OU ! homologou ! homolog
(m . l) ISM ! communism ! commun
(m . 1) ATE ! activate ! activ
(m . l) ITI ! angulariti ! angular
(m . l) OUS ! homologous ! homolog
(m . l) IVE ! effective ! effect
(m . l) IZE ! bowdlerize ! bowdler

Step 5a
(m . l) E ! probate ! probat

rate ! rate
(m ¼ l and not *o) E ! cease ! ceas

Step 5b
(m . land *d and *L) ! single letter control

! controll !
roll ! roll

List A List B

RELATE DERIVATE
PROBATE ACTIVATE
CONFLATE DEMONSTRATE
PIRATE NECESSITATE
PRELATE RENOVATE

An algorithm for
suffix stripping

217

Complex suffixes are removed bit by bit in the different steps. Thus,
GENERALIZATIONS is stripped to GENERALIZATION (Step 1), then to
GENERALIZE (Step 2), then to GENERAL (Step 3), and then to GENER (Step 4).
OSCILLATORS is stripped to OSCILLATOR (Step 1), then to OSCILLATE (Step 2),
then to OSCILL (Step 4), and then to OSCIL (Step 5). In a vocabulary of 10,000 words,
the reduction in size of the stem was distributed among the steps as follows:

The resulting vocabulary of stems contained 6,370 distinct entries. Thus, the suffix
stripping process reduced the size of the vocabulary by about one third.

References

Andrews, K. (1971), “The development of a fast conflation algorithm for English”, dissertation
for the Diploma in Computer Science, Computer Laboratory, University of Cambridge.

Cleverdon, C.W., Mills, J. and Keen, M. (1966), Factors Determining the Performance of Indexing
Systems, 2 vols, College of Aeronautics, Cranfield.

Colombo, D.S. and Niehoff, R.T. (n.d.), Final report on improved access to scientific and technical
information through automated vocabulary switching, NSF Grant No. SIS75-12924 to the
National Science Foundation.

Dattola, R.T. (1975), First: Flexible Information Retrieval System for Text, Xerox Corporation,
Webster, NY, 12 December.

Dawson, J.L. (1974), “Suffix removal and word conflation”, ALLC Bulletin, Michaelmas, pp. 33-46.

Lovins, J.B. (1968), “Development of a stemming algorithm”, Mechanical Translation and
Computational Linguistics, Vol. 11 No. 1, pp. 22-31.

Petrarca, A.E. and Lay, W.M. (1969), “Use of an automatically generated authority list to
eliminate scattering caused by some singular and plural main index terms”, Proceedings of
the American Society for Information Science, Vol. 6, pp. 277-82.

Suffix stripping of a vocabulary of 10,000 words

Number of words reduced in step 1 3,597
Number of words reduced in step 2 766
Number of words reduced in step 3 327
Number of words reduced in step 4 2,424
Number of words reduced in step 5 1,373
Number of words not reduced 3,650

PROG
40,3

218

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

